Thermophysical Analysis of Thermal Polymerization of Silica-Organic Cladding for Silica Fibers

V. N. IONOV, V. V. KASHIN, V. N. PERMINOVA, S. YA. RUSANOV, and V. K. SYSOEV, *General Physics Institute, Academy of Sciences of the USSR,* **38** *Vaviloo Street, Moscow 117942 USSR*

synopsis

The paper shows the advantages of graded furnaces for the thermal polymerization of a silica-organic polymer cladding for dica fibers. **Owing to the optimal longitudinal distribution of the heah a fivefold** increase **of the** fiber **drawing speed** *can* **be achiwed using heaters of the same lengths and power.**

INTRODUCTION

Nowadays high-speed fiber drawing is receiving much attention.¹⁻³ High **speed** improves reliability and fabrication efficiency of the fibers. One of the main factors limiting the speed of fiber drawing is the rate of the cladding polymerization. Silica-organic polymer polymerization is performed in fewmeter long furnaces, the drawing speed being **as** high **as** *600* **m/min,** at the temperatures up to **800°C.3** The **aim** of this work is first to measure the polymerization speed of the Soviet industrial silica-organic polymer SIEL, depending on the temperature, up to its destruction, and, second to develop longitudinal heaters of optimal temperature profile for the fiber cladding polymerization using **furnaces** of the same length and power.

THE **SPEED OF HEAT POLYMERIZATION OF A SILICA-ORGANIC POLYMER FILM**

The speed of polymerization depends significantly on the temperature of the compound mass. The temperature dependence of the polymerization **speed** of the silica-organic polymer SIEL in early works **has** been measured only in the low temperature region and for large compound masses.⁴ The polymer sewing up is characterized by the polymer being a thin film $($ \sim 100 μ m) and the temperatures actually being higher than those available in literature.⁴ The dependence of polymerization speed *(A)* on *T* for thin *films* **has** been measured experimentally and is presented in Figure 1, polymerization time (A^{-1}) being taken as the minimum time which is necessary to provide the mechanical strength of a fiber.

FIBER CLADDING POLYMER TEMPERATURE IN THE **HEATER** WITH **UNIFORM TEMPERATURE PROFILE**

According to our evaluations the polymer heating is mainly achieved owing to the heat transfer. The polymer temperature on a moving fiber at the

Fig. 1. The dependence of the polymerization speed of the SIEL silica-organic polymer on the temperature.

environmental temperature T_h will be described by the law⁵

$$
T = T_h \left[1 - \exp\left(-\psi \frac{\alpha}{c\rho} \frac{2}{R} t \right) \right]
$$
 (1)

where t is the heating time, ψ is the ratio of the polymer average surface area to the average fiber volume, C and ρ are some relevant values of the heat capacity and density calculated from the thermophysical characteristics of a polymer and a fiber, R is the outer radius of the fiber, and α is the heat exchange coefficient of the fiber coated by a polymer, which *can* be calculated using the cooling curves of the heated samples. *As* the measurements show, its value is

$$
\alpha = 4 \times 10^{-3} \Delta T \tag{2}
$$

where ΔT is the temperature difference of SIEL and the environment.

It is clear from (1) and **(2)** that the real temperature of SIEL is lower than that of the environment (T_h) . Heating is quick only when this difference is significant.

OPTIMAL LONGITUDINAL DISTRIBUTION OF THE POLYMER POLYMERIZATION HEATER TEMPERATURES FOR THE SILICA-ORGANIC

Assuming that the polymer temperature and, consequently, its polymerization **speed increases** greatly with the increase of the heater's temperature, we

propose a design of a furnace with **high** temperature in its front part and with a relatively low temperature in its other parts. For a detailed analysis of the process of polymer heating on a fiber, a model of a two-step furnace with the heater temperatures T_{h1} and T_{h2} and lengths $l_1 < l_2$ has been used. Turning our attention to the furnace of a **small** length and a not very **high** average temperature (300"C), we *can* **use** the temperature dependence of SIEL polymerization **speed** in order to calculate the time of fiber cladding polymerization in such a furnace for the different correlations of T_{h1} and T_{h2} . Thus Figure 2 shows that the first and **short** step of a furnace significantly improves the efficiency of low-power furnaces.

In order to check these calculations, experiments were conducted on a laser drawing set up⁶ with the length from the heating zone up to tuning roller not exceeding 3 m.

For the polymerization of the silica-organic cladding a heater was used consisting of 3 steps: **0.1** m, 1 m, and 0.1 m long, respectively. Such a three step furnace was used in order to simplify the technique of the experiment. At first the temperature of the whole heater (first, second, and third steps) was the same $(300^{\circ}C)$; and the maximum fiber drawing speed which could be achieved without the increase of losses (V) was about 25 m/min. Then the

Fig. 2. The time of polymerization of fiber **silica-organic cladding, passing the first step of the** heater at the temperature T_{h1} and the second one is at the temperature T_{h2} . The total length of the heater is 1 m; its average temperature, 350°C.

Fig. 3. The theoretical and **experimental results of polymerization in a two-step furnace. The temperature in the low temperature fonts (steps 2** and **3 for** *case* **1; steps 1** and **2 for case 2) is** *20O0C;* **the temperature in the variable temperature one (step 1 for case 1, step 3 for case 2) is marked at the abscissa axis.**

first step was heated up to T_{h1} ; the second and the third ones had the temperature of 200°C. Thus we *can* consider the temperature profile of a furnace to be of two steps.

Figure 3 (curve 1) shows the dependence of the drawing speed increase on the temperature of the 6rst step of the heater, the temperature of the other part of the furnace $(200^{\circ}C)$ being constant. When the temperature of the first step was $T_{h1} \approx 1200^{\circ}$ C, the speed became as high as 100 m/min.

Then the third step of a furnace was heated up to T_{h3} , the temperature of the first and second ones being 200° C. The fiber drawing speed did not increase *so* significantly **as** in the first *case* with the temperature increase in the last step T_{h3} (Fig. 3, curve 2). The experimental data shows good agreement with the numerical calculations.

CONCLUSIONS

Thus we showed the expediency of the graded furnace usage for the **high-speed** thermal polymerization of a fiber silica-organic cladding, though we did not **aim** to achieve top **speeds** of the fiber drawing.

It is **shown** that a four- to fivefold increase of the fiber drawing **speed** *can* be achieved without a significant increase of the power **as** a result of the optimization of the furnace longitudinal profile.

The authors wish **to thank E. E. Kudryavtseva for her assistance in** this **work.**

References

1. K. Kato, M. Nishimura, M. Nishimoto, and T. Kurona Fabrication and Properties of *Opticcll Fibers Coated by A.esswiZed Dies,* **ECOC-83,** North-Holland, Amsterdam, **1983,** pp. **357-360.**

Pressurized Dies," 4th Int. Conf. on Int. Opt. and Opt. Fibers Comm., 1983, Tokyo, 27, AH-3. 2. W. Wagatsuma, K. Chida, and T. Kumura, **"High-speed** Coating **of** Optical **Fibers** Using

3. N. Inagaki and K. Chid4 **"High-speed** Fiber Drawing," 4th Int. Conf. on Int. Opt. and Fibers Comm., **1983,** Tokyo, **27, A4-1.**

4. A. A. Teverovsky, **A.** K. Aksenov, N. G. Izmajlova, G. I. Epifanov, and S. R. Nanushjan, *Elektron. Tech., Ser. Materi.* **63,140-153 (1980).**

5. M. P. **Miheev** and I. N. **Miheeva,** *Short Course of Heat Transfer,* Gosenergoizdat, **Mascow, 1960,** pp. **51-54.**

6. **A. V.** Belov, **M. M.** Bubnov, **A.** N. Guryanov, G. G. Devyatykh, E. M. Dianov, **A. M.** Prokhorov, S. Ya. Rusanov, and **A.** S. **Yushin,** *Sou. J. Kvantmaya Elektron.,* **5 (9), 2064-2065 (1978).**

Received September 19,1986 Accepted September 30,1986